ارائه‌ی چهارچوبی برای حراج معکوس آنلاین مبتنی بر یادگیری بازار ساز در شرایط ریسک‌گریزی خریدار

نوع مقاله : علمی- پژوهشی

نویسندگان

1 دانشجوی دکتری صنایع، دانشکده صنایع، دانشگاه علم و صنعت ایران

2 عضو هیئت علمی دانشکده صنایع دانشگاه علم و صنعت ایران

چکیده

حراج معکوس آنلاین یکی از رویکردهای تأمین کالا و مواد موردنیاز بر بستر اینترنت می­باشد که در آن خریدار، یک یا چند فروشنده را بر اساس پیشنهادهای آن‌ها انتخاب می­نماید. در این مقاله یک چهارچوب جدید برای فرایند حراج معکوس آنلاین ارائه‌شده است که هر دو سوی فرایند تأمین (خریدار و فروشنده) را در نظر می­گیرد. فرایند حراج پیشنهادی یک حراج معکوس آنلاین چند شاخصه‌ی نیمه‌بسته چند دوره‌ای می­باشد. در این فرایند یک بازار ساز آنلاین، با پیش‌بینی تابع امتیازدهی خریدار، فرایند پیشنهاددهی فروشندگان را تسهیل می­نماید. در این حالت، علاوه بر پنهان بودن تابع امتیازدهی فروشنده، اطلاعاتی جهت بهبود پیشنهاددهی در اختیار فروشندگان قرار می­گیرد. برازش تابع امتیازدهی توسط یک شبکه عصبی پرسپترون چندلایه در نظر گرفته‌شده است. همچنین روش­های امتیازدهی خریدار به‌صورت جمعی، ضربی و ریسک‌گریز تعریف‌شده است. در این چهارچوب، فروشندگان در هر دور با استفاده از یک مدل بهینه­سازی، پیشنهادهای خود را بهبود می‌بخشند. با شبیه­سازی فرایند حراج، چهارچوب پیشنهادی در مقایسه با یک حراج باز با درنظرگرفتن معیارهای امتیاز فروشندگان، سود فروشندگان و تعداد دور حراج، مورد ارزیابی قرار گرفته است. نتایج شبیه­سازی نشان می­دهد که در مدل پیشنهادی علاوه بر عدم افشای اطلاعات امتیازدهی خریدار، تفاوت معناداری در معیارهای ارزیابی با مدل حراج باز وجود ندارد.

کلیدواژه‌ها


عنوان مقاله [English]

a

نویسندگان [English]

  • Hojjat Tayaran 1
  • Mehdi Ghazanfari 2
1 Ph.D Candidate, School of Industrial Engineering, Iran University of Science and Technology
2 The School of Industrial Engineering
چکیده [English]

a

کلیدواژه‌ها [English]

  • a
Beil, D. R., & Wein, L. M. (2003). An inverse-optimization-based auction mechanism to support a multiattribute RFQ process. Management science, 49(11), 1529-1545.
Che, Y.-K. (1993). Design competition through multidimensional auctions. The RAND Journal of Economics, 668-680.
Chen-Ritzo, C.-H., Harrison, T. P., Kwasnica, A. M., & Thomas, D. J. (2005). Better, faster, cheaper: An experimental analysis of a multiattribute reverse auction mechanism with restricted information feedback. Management science, 51(12), 1753-1762.
Cheng, C.-B. (2011). Reverse auction with buyer–supplier negotiation using bi-level distributed programming. European Journal of Operational Research, 211(3), 601-611.
Dráb, R., Štofa, T., & Delina, R. (2020). Analysis of the efficiency of electronic reverse auction settings: big data evidence. Electronic Commerce Research, 1-24.
Greenwald, A., Kannan, K., & Krishnan, R. (2010). On evaluating information revelation policies in procurement auctions: A Markov decision process approach. Information Systems Research, 21(1), 15-36.
Gupta, A., Parente, S. T., & Sanyal, P. (2012). Competitive bidding for health insurance contracts: lessons from the online HMO auctions. International journal of health care finance and economics, 12(4), 303-322.
Hu, Y., Wang, Y., Li, Y., & Tong, X. (2018). An incentive mechanism in mobile crowdsourcing based on multi-attribute reverse auctions. Sensors, 18(10), 3453.
Huang, M., Qian, X., Fang, S.-C., & Wang, X. (2016). Winner determination for risk aversion buyers in multi-attribute reverse auction. Omega, 59, 184-200.
Jap, S. D. (2007). The impact of online reverse auction design on buyer–supplier relationships. Journal of Marketing, 71(1), 146-159.
Kahneman, D., & Tversky, A. (2013). Prospect theory: An analysis of decision under risk Handbook of the fundamentals of financial decision making: Part I (pp. 99-127): World Scientific.
Karakaya, G., & Köksalan, M. (2011). An interactive approach for multi-attribute auctions. Decision Support Systems, 51(2), 299-306.
Karakaya, G., & Köksalan, M. (2016). An interactive approach for Bi-attribute multi-item auctions. Annals of Operations Research, 245(1-2), 97-119.
Liu, X., Zhang, Z., Qi, W., & Wang, D. (2020). An Evolutionary Game Study of the Behavioral Management of Bid Evaluations in Reserve Auctions. IEEE Access, 8, 95390-95402.
Mansouri, B., & Hassini, E. (2015). A Lagrangian approach to the winner determination problem in iterative combinatorial reverse auctions. European Journal of Operational Research, 244(2), 565-575.
Mouhoub, M., & Ghavamifar, F. (2016). Managing Constraints and Preferences for Winner Determination in Multi-attribute Reverse Auctions. Paper presented at the Machine Learning and Applications (ICMLA), 2016 15th IEEE International Conference on.
Narasimhan, R., Talluri, S., & Mahapatra, S. (2008). Effective response to RFQs and supplier development: A supplier's perspective. International Journal of Production Economics, 115(2), 461-470.
Parkes, D. C., & Kalagnanam, J. (2005). Models for iterative multiattribute procurement auctions. Management science, 51(3), 435-451.
Peng, L., & Calvi, R. (2012). Why don't buyers like electronic reverse auctions? Some insights from a French study. International Journal of Procurement Management, 5(3), 352-367.
Perrone, G., Roma, P., & Nigro, G. L. (2010). Designing multi-attribute auctions for engineering services procurement in new product development in the automotive context. International Journal of Production Economics, 124(1), 20-31.
Pham, L., Teich, J., Wallenius, H., & Wallenius, J. (2015). Multi-attribute online reverse auctions: Recent research trends. European Journal of Operational Research, 242(1), 1-9.
Qian, X., Fang, S.-C., Huang, M., & Wang, X. (2019). Winner determination of loss-averse buyers with incomplete information in multiattribute reverse auctions for clean energy device procurement. Energy, 177, 276-292.
Ray, A. K., Jenamani, M., & Mohapatra, P. K. (2011). An efficient reverse auction mechanism for limited supplier base. Electronic Commerce Research and Applications, 10(2), 170-182.
Saroop, A., Sehgal, S. K., & Ravikumar, K. (2007). A multi-attribute auction format for procurement with limited disclosure of buyer’s preference structure Decision Support for Global Enterprises (pp. 257-267): Springer.
Tassabehji, R., Taylor, W., Beach, R., & Wood, A. (2006). Reverse e-auctions and supplier-buyer relationships: an exploratory study. International Journal of Operations & Production Management, 26(2), 166-184.
Teich, J. E., Wallenius, H., Wallenius, J., & Koppius, O. R. (2004). Emerging multiple issue e-auctions. European Journal of Operational Research, 159(1), 1-16.
Teich, J. E., Wallenius, H., Wallenius, J., & Zaitsev, A. (2006). A multi-attribute e-auction mechanism for procurement: Theoretical foundations. European Journal of Operational Research, 175(1), 90-100.
Wang, S., Qu, S., Goh, M., Wahab, M., & Zhou, H. (2019). Integrated Multi-stage Decision-Making for Winner Determination Problem in Online Multi-attribute Reverse Auctions Under Uncertainty. International Journal of Fuzzy Systems, 21(8), 2354-2372.
Xu, S. X., & Huang, G. Q. (2017). Efficient Multi‐Attribute Multi‐Unit Auctions for B2B E‐Commerce Logistics. Production and Operations Management, 26(2), 292-304.
Yang, N., Liao, X., & Huang, W. W. (2014). Decision support for preference elicitation in multi-attribute electronic procurement auctions through an agent-based intermediary. Decision Support Systems, 57, 127-138.
Zhang, L., & Suganthan, P. N. J. I. S. (2016). A survey of randomized algorithms for training neural networks. 364, 146-155.