بررسی شبکه سرریز تلاطم سهم‌های شاخص سی شرکت: دوره حباب و سقوط بازار سهام

نوع مقاله : علمی- پژوهشی

نویسندگان

1 دانشجوی دکترای اقتصاد، دانشکده اقتصاد، مدیریت و حسابداری، دانشگاه یزد.

2 دانشیار اقتصاد، دانشکده اقتصاد، مدیریت و حسابداری، دانشگاه یزد .

3 استادیار اقتصاد، دانشکده اقتصاد، مدیریت و حسابداری، دانشگاه یزد.

4 دانشیار مدیریت صنعتی، دانشکده اقتصاد، مدیریت و حسابداری، دانشگاه یزد.

10.30465/jnet.2024.45484.2038

چکیده

بازار سهام از بازارهای مهم برای سرمایه‌گذاری است و شناخت رفتار سهم‌ها در دوره حباب و سقوط بازار، برای سرمایه‌گذاران اهمیت دارد. این پژوهش به بررسی سرریز تلاطم در سهم‌های شاخص سی شرکت به‌عنوان سهم‌هایی با بیش‌ترین ارزش بازار و نقدشوندگی در بازار سهام، با استفاده از آزمون سرریز دیبلدییلماز و تئوری شبکه پیچیده برای دوره زمانی حباب بازار سهام در سال 1399 و دوره سقوط سال‌های 1399 و1400 می‌پردازد. مطابق نتایج در دوره حباب بازار، سهم وپاسار بیش‌ترین گیرنده تلاطم در بازار و سهم کگل ‌بیش‌ترین فرستنده تلاطم در بازار سهام است. در دوره سقوط بازار، سهم خودرو بیش‌ترین فرستنده تلاطم و سهم وبصادر، بیش‌ترین گیرنده تلاطم در شبکه می‌باشد. در دوره حباب بازار، سهم وپاسار و جم دارای کم‌ترین سرریز تلاطم هستند. در دوره سقوط بازار سهام، ترکیب سهم‌های مبین و جم و هم‌چنین جم و پارسان، سهم‌های شپدیس و جم، سهم‌های شخارک و جم، سهم‌های شتران و جم در پرتفولیو دارای کم-ترین یکپارچه‌گی هستند.
طبقه­ بندی jel: C52 ،C51 ،C4

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the spillover network of volatility of index stocks of 30 companies: The bubble period and the crash of the stock market

نویسندگان [English]

  • samaneh bagheri 1
  • Habib Ansari Samani 2
  • mohammad hassan zare 3
  • mojtaba hossini bamakan 4
1 Ph.D. Student in Economics, Faculty of Economics, Management and Accounting, Yazd University
2 Associate Professor in Economics, Department of Economics, Yazd University.
3 Assistant Professor in Economics, Department of Economics, Yazd University.
4 Associate Professor in Industrial Management, Department of Industrial Management, Yazd University
چکیده [English]

The stock market is one of the important markets for investment, and it is important for investors to know the behavior of stocks during the bubble period and the market crash. This research investigates the volatility spillover in the index stocks of 30 companies as stocks with the highest market value and liquidity in the stock market, using the Diebold-Yilmaz spillover test and complex network theory for the time period of the stock market bubble in 2019 and the crash period. It covers the years 2019 and 2019. According to the results during the market bubble period, Vepasar´stock is the most receiver of turbulence in the market and Kegel´ stock is the most sender of turbulence in the stock market. During the period of market collapse, the stock is the most sender of volatility and the stock of exporters is the most receiver of volatility in the network. During the market bubble period, Vepasar and Jam have the least volatility. During th crach of the stock market, the combination of Mobin and Jam stocks, as well as Jam and Parsan´stock, Shapdis and Jam´stock, Shekhark and Jam stocks, Shatran and Jam stocks in the portfolio have the least integration.

کلیدواژه‌ها [English]

  • stock market bubble؛ stock market crash؛ Diebold-ylimaz spillover index؛ complex network theory؛ stock market jel classification: C52
  • C51
  • C4
باقری، سمانه و انصاری سامانی، حبیب (1400). سرایت بحران مالی به بازار سهام ایران: رویکرد شبکه. بررسی مسائل اقتصاد ایران.
حسین­زاده، هدایت. (1399). شناسایی حباب­های چندگانه در بورس اوراق بهادار تهران با استفاده از آزمون ریشه واحد مارکوف سوییچینگ راست دنباله، اقتصاد و تجارت نوین، 50-29: (11)4.
طالبلو، رضا و مهاجری، پریسا. (1400). الگوسازی سرایت تلاطم در بازار سهام ایران، رویکرد فضا-حالت غیرخطی، تحقیقات اقتصادی، 990-961:(4)55.
نیکومرام، هاشم، پورزمانی، زهرا، دهقان، عبدالمجید. (1392). سرایت پذیری تلاطم در بازار سرمایه ایران، دانش سرمایه­گذاری، 179-199: (3)11.
ممی­پور، سیاب و فعلی، فاطمه. (1395). بررسی سرریز تلاطم قیمت نفت بر بازدهی صنایع منتخب در بورس اوراق بهادار تهران: رویکرد تغییر رژیم مارکوف و تجزیه واریانس، پژوهش­های اقتصاد پولی، مالی. 234-205: (24)14.
Ahelegbey, D.F. and Giudici, P. (2022). NetVIX - A network volatility index of financial markets. Physica A, 594.
Alexander, C. (2008). Market risk analysis: Practical financial econometrics (Vol. II). Hoboken: Wiley.
Bagheri, S. (2023). Carbon Dioxide Emission Spillover in the OPEC Member Countries. Environment and Interdisciplinary Development, 8(79), 14-25.
Baruník, J,Kočenda, E, Vácha, L.(2017). Asymmetric volatility connectedness on the forex market, Journal of International Money and Finance.
 Baumöhl, E, Kočenda, E, Lyócsa, S,Výrost, T. (2018). Networks of volatility spillovers among stock markets. Physica A.490: 1555–1574.
Bernales A., Verousis T.,Voukelators N. (2016). Do Investors Follow the Herd in Option Markets? Journal of Banking & Finance.
Bonanno, G., Caldarelli, G., Lillo, F., Micciche, S., Vandewalle, N., & Mantegna, R. N. (2004). Networks of equities in financial markets. The European Physical Journal B, 38(2), 363-371.
Bonato, M., Caporin M. and Ranaldo, A. (2011). Hedging risk spillovers in international equity Portfolios. Working paper.
Cao, J., & Wen, F. (2019). The impact of the cross-shareholding network on extreme price movements: Evidence from China. Journal of Risk, 22(2), 79–102.
Chowdhury, B, Dungy, M, Kangogo, M, Abu Sayeed, M, Volkov, V,(2019). The Changing Network of Market Linlage: The Asian Experience, International Review of Financial Analysis, 64:71-92.
Chundakkadan, R, Nedumparambil, E.(2021). In search of COVID-19 and stock market behavior. Global Finance Journal.
Chunxia, Xueshuai, Z, Qian, L , Yanhua, C, Qiangqiang, D, (2014). Research on the evolution of stock correlation based on maximal spanning trees. Physica A 415: 1–18.
Diebold, F and Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers, International Journal of Forecasting. 1(28): 57-66.
Diebold, F.X., Yilmaz, K., (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. The Economic Journal. 119, 158:171.
Engle, R. F., Ito, T. and Lin, W. (1990). Metor showers or heat waves? Heteroskedastistiy intra-daily volatility in foreign exchange market. Econometrica, 58 (93): 525-542.
Eryigit, M and Eryigit, R.(2009). Network structure of cross-correlations among the world market indices. Physica A. 388:3551-3562.
ELMI, R. (2020). Global Market’s Diagnosis on Coronavirus: A Tug of War between Hope and Fear, Jamal Bouoiyour.
Garber, P.M. (1992). Crashes. In: Newman, P. and al. (eds.): The New Palgrave Dictionary of Money and Finance. I., Macmillan Reference, London, 511-513.
Gamba-Santamaria, S, Gomez-Gonzalez, J Hurtado-Guarin, J.L., Luis Fernando Melo-Velandia, L,F. (2016). Stock market volatility spillovers: Evidence for Latin America. Finance Research Letters, 1–10.
Galariotis E.C., Rong W., Spyrou S. (2015). Herding on fundamental information: A comparative study. Journal of Banking & Finance, 50: 589-598.
Hamao, Y., Masulis, R., & Ng, V. (1990). Correlations in price changes and volatility across international stock markets. Review of Financial Studies, 3, 281−307. 
Huang, X, Zhou, H, Zhu, H, B, (2009). A framework for assessing the systemic risk of major financial institutions, J. Bank. Financ. 33 (11) :2036–2049.
Iversen, I ,G. and Aven, T.(2021). On the meaning of and relationship between dragon-kings, black swans and related concepts. Reliability Engineering & System Safety.
Johansen, A., Ledoit, O., & Sornette, D. (2000). Crashes as Critical Points. International Journal of Theoretical and Applied Finance , 2, 219-255.
Kito, T. and Ueda, K., 2014. The implications of automobile parts supply network structures: A complex network approach. CIRP Annals-Manufacturing Technology, 63(1):393-396.
Keynes, M (1934). The general theory of Employment, Interest and Money, Harcourt, New York.
Khalifa A. A. A., Hammoud , S., Otranto, E. (2014), Patterns of Volatility Transmissions within Regime Switching across GCC and Global Markets, International Review of Economics & Finance, 29: 512-524.
Kharrazi,A.(2019).Resilience, Encyclopedia of Ecology (Second Edition). 9780444641304 .414-418.
Lin, W., Engle, R., & Ito, T. (1994). Do bulls and bears move across borders? International transmission of stock returns and volatility. Review of Financial Studies, 7: 507−538.
Pontes, L,S and Rego,L,C. (2021). Impact of macroeconomic variables on the topological structure of the Brazilian stock market: A complex network approach. Physica A.
Reinhart. C. and Calvo, S., (1996). Capital Flows to Latin America: Is there evidence of contagion effect? International Monetary Fund, 41(3-4): 235-264.
Schuenemann, J.H,Ribberink,N, Katenka, N. (2020). Japanese and Chinese Stock Market Behaviour in Comparison – an analysis of dynamic networks. Asia Pacific Management Review. 25(2): 99-110.
Stanley, H, Afanasyev, V, Amaral, L,Buldyrev, S, Goldberger, A,  Havlin, S, Leschhorn,H  Maass, P, Mantegna, N, Peng, C, P. Prince, M. Salinger, M. Stanley, G. Viswanathan,(1996). Anomalous fluctuations in the dynamics of complex systems: from DNA and physiology to econophysics, Physica A. 224:302–321.
Sun, W., Tian, C., & Yang, G. (2015). Network analysis of the stock market. CS224W Project Report.
Tumminello, M., Lillo, F., & Mantegna, R. N. (2010). Correlation, hierarchies, and networks in financial markets. Journal of Economic Behavior & Organization, 75(1), 40-58.
Tabak, B,M, Silva, T.C, de Souza, S,R,T (2016). Structure and dynamics of the global financial network. Chaos, Solitons and Fractals 88 (2016) 218–234.
Yarovaya, L, Brzeszczynski,J, Lau, C.M. (2016).  Volatility spillovers across stock index futures in Asian markets: Evidence from range volatility estimators. Finance Research Letters 17 (2016) 158–166.
Yip ,Y.S. Brooks, R,Do, H. X, Nguyen, D, K. (2020). Dynamic volatility spillover effects between oil and agricultural products. International Review of Financial Analysis. 69.
Zhenga, T and Zuo, H .(2013). Reexamining the time-varying volatility spillover effects: A Markov switching causality approach. North American Journal of Economics and Finance 26: 643– 662.
Zhang, W, Zhuang, x , Li, Y. (2019). Dynamic evolution process of financial impact path under the multidimensional spatial effect based on G20 financial network. Physica A.
Zhang, W,. Zhuang, X, Lu, Y. (2020). Spatial Spillover Effect and Risk Contagion Around G20 Stock  Market Based on Volatility Network. North Amerian Journal of Economics and Finanace.
Huang, C, Zhao, X, Deng, Y, Yang, X, Yang, X. (2022). Evaluating influential nodes for the Chinese energy stocks based on jump volatility spillover network. International Review of Economics and Finance 78: 81–94.
Milunovich, G, and Thorp, S. (2006). Valuing volatility spillovers. Global Finance Journal 17: 1–22.