ارائه رویکرد نوین جهت حضور و تجارت خرده‌فروش در قراردادهای اقتصادی بازار برق مبتنی بر بهینه‌سازی بازه‌ای و مشارکت مصرف‌کننده در بهینه‌سازی مصرف انرژی

نوع مقاله : علمی- پژوهشی

نویسندگان

1 دانشجوی دکتری،گروه مهندسی برق قدرت و کنترل، دانشکده مکانیک، برق و کامپیوتر، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران،

2 دانشیار، گروه آموزشی مهندسی برق قدرت و کنترل، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران

3 استادیار، گروه برق قدرت و کنترل، دانشکده مکانیک، برق و کامپیوتر، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران

4 دانشیار، گروه مهندسی برق قدرت و کنترل، دانشکده مکانیک، برق و کامپیوتر، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران

چکیده

بازار خرده فروشی برق واسطی میان مصرف‌کننده نهایی و بازار عمده فروشی جهت تامین انرژی مصرف‌کننده می‌باشد. یکی از ابزارهای اساسی در تعامل میان خرده‌فروش و مصرف‌کننده نهایی، بهره‌گیری از برنامه‌های پاسخگویی بار می‌باشد.‌ در این پژوهش مدلی تجاری-اقتصادی با هدف حداکثر تعامل میان خرده‌فروش و سایر بازیگران بازار برق مبتنی بر بهینه‌سازی بازه‌ای و برنامه‌های پاسخگویی بار به منظور تصمیم‌گیری بهینه خرده‌فروش در قراردادهای دوجانبه و بازار حوضچه پیشنهاد شده است. این مدل پیشنهادی سود خرده‌فروش را قبل و بعد از اجرای برنامه مناسب پاسخگویی بار محاسبه کرده و در نهایت اختلاف میان این دو مقدار را حداکثر می‌کند. نتایج حاصل از حل مدل پیشنهادی نشان می‌دهد که با بکارگیری برنامه‌های قیمت محور پاسخگویی بار حداکثرشدن مشارکت مصرف‌کننده در کاهش میزان اوج بار شبکه براساس میزان کشش قیمتی هر مشترک قابل دستیابی است. در طرف مقابل نیز براساس مدلسازی مناسب عدم قطعیتها از جمله کشش قیمتی مشتریان و قیمتهای بازار حوضچه، سود خرده‌فروش با حد مناسبی از ریسک افزایش خواهد یافت. در مورد سود خرده‌فروش می‌توان نتیجه گرفت که براساس اعمال رویکرد فازی و اپسیلون محدود و تعیین نقاط بهینه پرتو حداکثر سود در تعرفه قیمت‌گذاری زمان لحظه‌ای در مقایسه با تعرفه قیمت‌گذاری زمان استفاده رخ خواهد داد. از نقطه نظر حداکثر تعامل میان خرده‌فروش و مصرف‌کننده نهایی در بازار برق براساس پژوهش کنونی، سیاست مطلوب سیاست استفاده از روشهای هوشمند برنامه‌های قیمت-محور پاسخگویی بار می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Proposing a new approach to the presence and trade of retailers in economic contracts of the electricity market based on interval optimization and customer participation in energy consumption optimization

نویسندگان [English]

  • kourosh Apornak 1
  • soodabeh soleymani 2
  • faramarz faghihi 3
  • seyed babak mozafari 4
1 PhD Candidate- Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Associate Professor - Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 Assistant Professor - Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
4 Associate Professor - Department of Electrical Engineering, , Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

The retail electricity market is the intermediary between end-user customer and the wholesale market to supply customers’ energy. One of the basic tools in interaction between the retailer and the end-user customer is use of demand response programs. In this research, a business-economic model with the aim of maximum interaction between retailer and other electricity market players based on interval optimization and demand response programs is proposed to achieve an optimal decision of retailer in bilateral contracts and the pool electricity market. This proposed model calculates the retailer's profit before and after the implementation of appropriate demand response program and ultimately maximizes the difference between these two values. The results show that by using price-based demand response programs and price elasticity of each customer, maximum participation of customer in reducing peak load of the power grid can be achieved. On the other hand, based on proper modeling of uncertainties such as price elasticity and pool electricity market prices, the retailer's profit will increase with a suitable level of risk. For retailer profit, it can be concluded that based on application of fuzzy and epsilon constraint method, determining an optimal pareto points and retailer profit maximization will occur in real time pricing tariff compared to time of use pricing tariff . From the maximum interaction point of view between the retailer and the end-user customer in the electricity market based on the current research, the preferred policy is the policy of using intelligent methods of price-based demand response programs.

کلیدواژه‌ها [English]

  • Business-Economical Model
  • Electricity Market
  • Retailer-Customer Interaction
  • Electricity Retail Market
  • Demand Response JEL Classification: K32-L81-Q43-O13
  1. سیده اسرا احمدی، مجید سبزه و یاسر کارگری، ("1399") "تئوری پرتفوی و بازار برق: مطالعه مروری". فصلنامه پژوهش های کاربردی در مدیریت و حسابداری، دوره: 5، شماره: 17، صص 41-67

    Ahmadi, A., Charwand, M., Aghaei. J., 2013, Risk-Constrained Optimal Strategy for Retailer Forward Contract Portfolio    International Journal of Electrical Power & Energy Systems 53,704-713.

    Albadi, M., El-saadany. E.F., 2008, A summary of demand response in electricity markets, Electric Power System Research 78, 1989-1996

    Albadi, M., El-Saadany, E. F., 2007, Demand Response in Electricity Markets: An Overview, IEEE Power Engineering Society General Meeting, 1-5.

    Bo Sun, Fan Wang⁎, Jingdong Xie, Xin Sun, 2021, “Electricity Retailer Trading Portfolio Optimization Considering Risk Assessment in Chinese Electricity Market”, Electric Power Systems Research

    Boroumand RH, Goutte S, Guesmi K, Porcher T, 2019, “Potential benefits of optimal intraday electricity hedging for the environment: The perspective of electricity retailers. Energy Policy, 132, 1120–1129.

    Carrion, M., Conejo, AJ, Arroyo, JM., 2007, Forward Contracting And Selling Price Determination For a Retailer, IEEE Transaction on Power Systems 22, 2105-2114.

    Carrion, M., Conejo, A.J., Arroyo, J.M., 2009, A Bilevel Stochastic Programming Approach for Retailer Futures Market Trading. IEEE Transaction on Power Systems 24, 1446-1456.

    Charwand, M., Gitizadeh, M., Siano, P., 2017, A New Active Portfolio Risk Management for an Electricity Retailer Based on A Drawdown Risk Preference, Energy 118,387-398.

    Conejo, A.J., Carrión,M., Morales, J.M., 2010, Decision Making Under Uncertainty in Electricity Markets, New York, NY, USA, Springer.

    Feinberg, E. A., Genethliou, D., 2005, Load Forecasting, Applied Mathematics for Restructured Electric Power Systems, 269–285.

    Gabriel, SA, Conejo, AJ., Plazas, MA., Balakrishnan S., 2006, Optimal Price And Quantity Determination for Retail Electric Power Contracts, IEEE Transaction on  Power Systems 21, 180-187.

    Gill,P.E., Murray, W., Michael A.S., 2002, Snopt: an SQP Algorithm for Large-Scale Constrained Optimization, Siam Journal on Optimization 47,99-131.

    Hao, H., Corbin, C.D., Kalsi,K., Pratt,R.G., 2017, Transactive Control of Commercial Buildings for Demand Response, IEEE Transaction on Power Systems 32, 774-783.

    Hatami, A.R., Seifi, H., Sheikh-El-Eslami, M.K., 2009, Optimal Selling Price and Energy Procurement Strategies for a Retailer in an Electricity Market, Electric Power Systems Research 79,246-254.

    1. Yang, J. Zhao, F. Luo, F. Wen, and Z. Y. Dong, 2018, Decision-making for electricity retailers: A brief survey,'' IEEE Transaction on Smart Grid, 9, 4140-4153

    Jiang,Y., Hou,J., Lin,Z., Wen,F., Li,J., He,C., Ji,C., Lin,Z., Ding,Y., Yang,L.,2019, Optimal Bidding Strategy for a  Power Producer Under Monthly Pre-Listing Balancing Mechanism in Actual Sequential Energy Dual-Market in China, IEEE Access 7, 70986-70998.

    Jin, M., Feng, W., Marnay, C., Spanos, C., 2018, Microgrid to Enable Optimal Distributed Energy Retail and End-User Demand Response, Applied Energy 210, 1321-1335.

    Kettunen, J., Salo, A., Bunn DW, 2010, Optimization of Electricity Retailer's Contract Portfolio Subject to Risk Preferences, IEEE Transaction on Power Systems 25,117-128.

    Kirschen, D., Strbac, G., Cumperayot, P., De Paiva Mendes, D., 2000, Factoring the Elasticity of Demand in Electricity Prices. IEEE Transaction on Power Systems 15, 612-617.

    Marzband, M., Javadi, M., Pourmousavi, SA., Lightbody, G., 2018, An Advanced Retail Electricity Market for Active Distribution Systems and Home Microgrid Interoperability Based on Game Theory, Electric Power System Research 157, 187-199.

    Majidi, M., Nojavan, S., Zare, K., 2017, A Cost-Emission Framework for Hub Energy System Under Demand Response Program, Energy 134, 157-166.

    Mohseni-Bonab, S.M., Rabiee, A., Mohammadi-Ivatloo, B., Jalilzadeh, S., Nojavan, S., 2016, A Two-Point Estimate Method for Uncertainty Modeling in Multi-Objective Optimal Reactive Power Dispatch Problem, International Journal of Electrical Power & Energy Systems 75,194–204.

    Mazidi, M., Monsef, H., Siano, P., 2016, Robust Day-Ahead Scheduling of Smart Distribution Networks Considering Demand Response Programs, Applied Energy 178, 929-942.

    Nazari, M., Foroud, AA, 2013, Optimal Strategy Planning for A Retailer Considering Medium And Short-Term Decisions, International Journal of Electrical Power & Energy Systems 45,107-116.

    Nojavan, S., Zare, K., Mohammadi-Ivatloo, B., 2017, Risk-Based Framework for Supplying Electricity from Renewable Generation-Owning Retailers to Price-Sensitive Customers Using Information Gap Decision Theory. International Journal of Electrical Power & Energy Systems 93,156-170.

    Nojavan, S., Zare, K., Mohammadi-Ivatloo, B., 2017, Selling Price Determination by Electricity Retailer in The Smart Grid Under Demand Side Management in The Presence of The Electrolyser And Fuel Cell As Hydrogen Storage System, International Journal of Hydrogen Energy 42, 3294-3308.

    Nojavan, S., Mehdinejad, M., Zare, K., Mohammadi-Ivatloo, B., 2015, Energy Procurement Management for Electricity Retailer Using New Hybrid Approach Based on Combined BICA–BPSO, International Journal of Electrical Power & Energy Systems 73,411-419.

    Nojavan, S., Majidi, M., Najafi-Ghalelou, A., Ghahramani, M., Zare, K., 2017. A Cost Emission Model for Fuel Cell/PV/Battery Hybrid Energy System in the Presence of Demand Response Program: ε-Constraint Method and Fuzzy Satisfying Approach, Energy Convers and Management 138, 383–392.

    Nojavan, S., Majidi, M., Zare, K., 2018, Optimal Scheduling of Heating and Power Hubs Under Economic and Environment Issues in the Presence of Peak Load Management, Energy Convers and Management 156, 34–44.

    Pal, S., Thakur, S., Kumar, R., Panigrahi, BK., 2018, A Strategical Game Theoretic Based Demand Response Model for Residential Consumers in a Fair Environment, International Journal of Electrical Power & Energy Systems 97,201-210.

    1. Zhang and J. Li, 2012 "Demand response in electricity markets: A review," 9th International Conference on the European Energy Market, Florence, pp. 1-8.
    2. Esmaeili, A. Anvari-Moghaddam, and S. Jadid, 2019, “Retail market equilibrium and interactions among reconfigurable networked microgrids,'' Sustainable Cities and Society, vol. 49

    Rosenthal, R.E., 2008, GAMS-A User’s Guide, GAMS Development Corporation. Washington, DC.

    Shareef, H., Ahmed, M.S., Mohamed,A., Al Hassan.E, 2018, Review on Home Energy Management System

                Considering Demand Responses, Smart Technologies, and Intelligent Controllers, IEEE Access 6, 24498- 24509.

    Song, M., Amelin, M., 2017, Purchase Bidding Strategy for a Retailer with Flexible Demands in Day-Ahead Electricity Market, IEEE Transaction on Power Systems 32, 1839–1850.

    1. Wu, G. Li and Z. Bie, 2019 “Power procurement strategies of retailer considering demand response program”, 8th Renewable Power Generation Conference, pp.1-8.

    Vardakas, JS, Zorba, N., Verikoukis, CV., 2015, A Survey on Demand Response Programs in Smart Grids: Pricing   Methods and Optimization Algorithms, IEEE Communications Surveys & Tutorials 17,152-178.

    1. Cao, Q. Wang, Q. Fan, S. Nojavan, and K. Jermsittiparsert, 2020, “Risk constrained stochastic power procurement of storage-based large electricity consumer,'' Journal of Energy Storage, vol. 28.